METABOLISM AND ACTION OF THE PROSTAGLANDIN ENDOPEROXIDE PGH2 IN RAT KIDNEY

Terry V. Zenser, Ceil A. Herman, Robert R. Gorman, and Bernard B. Davis

Geriatric Center, V.A. Hospital, St. Louis University Medical School, St. Louis,
Mo. 63125 and Experimental Biology Research, The Upjohn Company, Kalamazoo, Mich.

Received August 31,1977

SUMMARY: Kidney membrane fractions metabolized $[1^{-14}c]PGH_2$ to TXB_2 , PGE_2 , $PGF_{2\alpha}$, PGD_2 , 6-keto $PGF_{1\alpha}$, and PGD_2 , as measured by PGD_2 , was enzymatically formed in cortex microsomes and was identified by thin layer chromatography and gas chromatography - mass spectrometry. PGH_2 caused a labile inhibition of cortical PGE_2 -stimulated adenylate cyclase. PGE_2 , $PGF_{2\alpha}$, and PGD_2 are stimulators of cortical adenylate cyclase. The inability of two thromboxane synthetase inhibitors, imidazole and 9,11-azoprosta-5,13 dienoic acid, to block PGH_2 inhibition suggested that PGD_2 are stimulators of cortical PGD_2 in this process. Therefore, a potential function of cortical PGH_2 is inhibition of adenylate cyclase.

INTRODUCTION

Recent experiments with platelets (1), vascular tissue (2), and stomach (2) indicate thromboxane (TX)A2 and PGI2, like PGE2 and PGF2a, are metabolic products of the cyclic endoperoxide prostaglandin PGH2. TXA2 is a potent vasoconstrictor (3) and, like PGH2, inhibits PGE1-stimulated platelet adenylate cyclase, and promotes platelet aggregation (4). PGI, has opposite effects. It is a vasodilator (2); stimulates adenylate cyclase (5); and inhibits platelet aggregation (5). Since the identification of medullin, an antihypertensive material prepared from the renal medulla, as a prostaglandin (6), there has been a sustained interest in the biological significance of renal production and responsiveness to prostaglandins. Prostaglandins synthesized by the kidney are PGE_2 , $PGF_{2\alpha}$, and PGD_2 (7). Because of the potentially important relationships between renal function and prostaglandin synthesis, further characterization of that synthesis and renal responses to various prostaglandins are important. The present study characterizes the products of PGH2 metabolism in the kidney and examines some interactions of prostaglandins with renal adenylate cyclase.

METHODS

Thin Layer Chromatography. Metabolites of $[1^{-14}C]PGH_2$, prepared biosynthetically as previously described (8), were identified by thin layer chromatography on silica gel plates. Plates were developed with either solvent

system A which contained the organic phase from ethyl acetate, acetic acid, 2,2,4-trimethylpentane, and water (110:20:50:100) or solvent system B containing 1% acetic acid in ethyl acetate. The plates were then scanned with a Vangard Strip Scanner to determine radioactivity. Solvent system A separates 6-keto $PGF_{1\alpha}$, $PGF_{2\alpha}$, PGD_2 , and HHT (12L-hydroxy-5,8,10-heptadecatrienoic acid) but not PGE_2 and TXB_2 . Using solvent system B, PGE_2 and TXB_2 are separated, but not 6-keto $PGF_{1\alpha}$ and $PGF_{2\alpha}$. The distribution of PGD_2 and HHT were qualitatively as well as quantitatively similar in both solvent systems (Table I).

Gas Chromatography - Mass Spectrometry: Identification of Thromboxane B_2 Cortical 100,000 xg fraction (25 mg protein) was incubated with 500 mg of PGH₂ under the assay conditions used for adenylate cyclase. The reaction mixture was extracted with diethyl ether and separated on a silicic acid column. Fractions containing TXB_2 were pooled and treated with ethereal diazomethane and silanized with a 3:1 mixture of bis (N,0-trimethylsilyl) trifluoroacetamide and dimethyl formimide. The mixture was allowed to stand at room temperature for 1 hr before being subjected to GC/MS analysis. GC/MS analyses were done on an LKB-9000 GC/MS equipped with a 6 ft. column of 1% SE-30 on GasChrom Q (80-100 mesh) operated at 210°. Both the flash heater and the separator were operated at 240° and the carrier helium gas flow was set at 30 ml/min. Electronic energy was kept at 22.5 ev and trap current was 60 μ A. Unknown material gave a single GC peak with a C-value of 24.8.

Preparation of Renal Fractions and Assay of Adenylate Cyclase Activity. Tissue slices from cortex, outer medulla, and inner medulla were collected separately, minced, and homogenized as previously described (9). This homogenate was separated into 1,000 xg, 40,000 xg, and 100,000 xg fractions. Adenylate cyclase reaction mixture was as previously described (9), except 8 µM GTP was included, and cyclic AMP was isolated by a 2-step column procedure (10). Protein was estimated by the Lowry method (11). Basal activity represents that activity observed in the absence of test agents and was not altered by the ethanol or acetone diluents for PGE₂ and PGH₂, respectively.

RESULTS

 PGE_2 , $PGF_{2\alpha}$, and HHT (a product of PGH_2 thought to be formed non-enzymatically) each represented approximately a 20-30% metabolism of PGH_2 (Table I). In each fraction, less 6-keto $PGF_{1\alpha}$ (the stable metabolite of PGI_2) or PGD_2 were produced than either PGE_2 or $PGF_{2\alpha}$. Cortical fractions demonstrated the highest conversion of PGH_2 to 6-keto $PGF_{1\alpha}$ while the inner medulla yielded the highest percentage conversion to PGD_2 . The inner medulla produced the least amount of TXB_2 (a stable hydrolysis product of TXA_2) with the 100,000 xg fraction of the cortex producing 4 to 8 times as much TXB_2 as the corresponding fraction of the inner medulla. Considerable TXB_2 synthesis was also observed in the 40,000 xg fraction of outer medulla. TXB_2 formed by the 100,000 xg cortical fraction was structurally identified by gas chromatographymass spectrometry. TXB_2 mass spectrum gave a base peak at m/e 256 and other major ions at m/e 510, 420, 366, 295, 225, and 217. These results confirmed

TABLE I. METABOLISM OF $[1-^{14}C]$ PGH $_2$ IN RENAL CORTEX, OUTER MEDULLA AND INNER MEDULLA

	1,000 x g		40,000 x g		100,000 x g					
	System A	System B	System A	System B	System A	System B				
% total counts on TLC plate										
CORTEX										
6-keto PGF $_{1\alpha}$	10		8		12					
$PGF_{2\alpha}$	32		18		23					
6-keto $PGF_{1\alpha} + PGF_{2\alpha}$	ι	39		23		31				
PGE ₂		25		32		14				
TXB ₂		9		12		24				
PGE ₂ - TXB ₂	31		40		36					
PGD ₂	8	5	14	11	5	6				
ннт	21	24	22	24	25	27				
OUTER MEDULLA										
6-keto PGF _{1α}	7		7		3					
PGF _{2a}	26		22		28					
6-keto PGF _{1a} + PGF ₂₀	ı	28		21		27				
PGE ₂		24		20		21				
TXB ₂	*	9		20		14				
PGE ₂ - TXB ₂	31		38		34					
PGD ₂	13	7	9	7	12	7				
HHT	24	34	27	35	25	32				
INNER MEDULLA										
6-keto $PGF_{1\alpha}$	3		3		2					
PGF _{2α}	24		27		25					
6-keto PGF _{1\alpha} + PGF _{2\alpha}	ı	18		26		22				
PGE ₂		27		22		27				
TXB ₂		3		6		3				
PGE ₂ -TXB ₂	33		29		32					
PGD ₂	23	18	13	11	26	21				
ннт	20	37	30	38	18	30				

that the compound was thromboxane B_2 , as both the retention time and the fragmentation pattern were identical to those reported by Hamberg and Samuelsson (12).

In the 1,000 xg and 100,000 xg fractions, PGE_2 (8x10 ^{-4}M) caused an increase

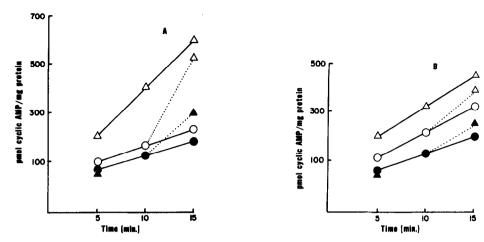


Figure 1. Effects of PGE₂ and PGH₂ on renal cortical a) 1,000xg and b) 100,000xg adenylate cyclase activity. Dotted lines indicate values for PGE₂ following addition after 10 min. of incubation in the presence or absence of PGH₂. Basal and PGE₂ adenylate cyclase values are represented by open circles and triangles, respectively, with dark symbols (\bullet , \blacktriangle) representing the presence of 1 x 10⁻¹M PGH₂. Each value represents the mean of triplicate determinations with a standard error of less than 10%.

in adenylate cyclase activity that was linear between 5 and 15 minutes (Fig. 1, a and b). PGH₂ (1x10⁻⁴M) reduced basal activity at 10 and 15 minutes and blocked PGE₂ stimulation at 5 min. However, there was no inhibition of the PGE₂ effect when the PGH₂ was incubated with the membranes for 10 min. prior to addition of PGE₂. Preincubation of membranes with two different thromboxane synthetase inhibitors, 1 mM imidazole (Table II) or 1 mM 9,11 azoprosta-5,13 dienoic acid (Azo analog I) did not alter adenylate cyclase activity nor block PGH₂ inhibition.

DISCUSSION

[1-14C]PGH₂ was converted to TXB₂, PGE₂, PGF_{2α}, PGD₂, 6-keto PGF_{1α}, and HHT. Synthesis of TXB₂ was verified by thin layer chromatography and mass spectral analysis. TXB₂ synthesis was primarily in the cortex and outer medulla with the largest percent conversion in the cortical 100,000 xg particulate—fraction. Synthesis was probably enzymatic, since boiling the 100,000 xg fraction eliminated TXB₂ production. The percentage of conversion

TABLE II. EFFECT OF IMIDAZOLE ON PGH_2 INHIBITION OF $PGE_2-STIMULATED \ ADENYLATE \ CYCLASE$

		Imidazole					
	-		+				
	pmol cyc	lic	AMP/mg protein/	5 min			
1,000 x g							
Basal	57 ±	14	51 ± 5				
+PGH ₂	56 ±	9	55 ± 11				
PGE ₂	145 ±	9	132 ± 14				
+PGH ₂	60 ±	2	56 ± 9				
00,000 x g							
Basal	122 ±	3	120 ± 2				
+PGH ₂	86 ±	3	68 ± 3				
PGE ₂	191 ±	4	181 ± 3				
+PGH ₂	81 ±	2	84 ± 3				

Membrane fractions were preincubated 5 min at 30°C with or without 3mM imidazole and then incubated for 5 min at 30°C in the presence or absence PGH_2 ($1x10^{-4}\text{M}$) or PGE_2 ($8x10^{-4}\text{M}$). The final concentration of imidazole in the adenylate cyclase incubation was 1mM. Each value represents the mean \pm S.E. of triplicate determinations.

of PGH₂ to its natural prostaglandin metabolites was the following: $PGE_2 = PGF_{2\alpha} > PGD_2 > PGI_2.$

The PGH₂ metabolites formed have been reported to affect adenylate cyclase differently. PGE₂ stimulates renal cortical (9) and PGI₂ stimulates platelet adenylate cyclase (5). By contrast, $PGF_{2\alpha}$ and PGD_2 are only weak stimulators

of renal cortical adenylate cyclase (9). HHT is a stable PGH2 metabolite which does not affect platelet adenylate cyclase (4). PGH2 is a labile inhibitor of hormone-stimulated adenylate cyclase activity in fat cell ghosts (13), and both PGH2 and TXA2 inhibit PGE1-stimulated cyclic AMP accumulation in platelets (4). In the present study, PGH2 inhibited basal and PGE2 activation of adenylate cyclase in cortex. The inhibition appears to be due to an unstable substance because addition of PGE2 to preparations preincubated for 10 min. with PGH2 resulted in significant increases in adenylate cyclase activity. PGH2 is unstable in aqueous solution as are two of its metabolites, PGI2 and TXA2. Although PGI2 was not tested in this study, previous studies with platelets indicate PGI2 stimulates adenylate cyclase (5). Imidazole and Azo analog I inhibit thromboxane synthetase activity (14,15). Preliminary experiments demonstrated that 1 mM imidazole or 28 µM Azo analog I completely inhibit TXB2 formation from 50 nM[$1-^{14}$ C]PGH₂ in the 100,000 xg cortical fraction. Neither altered the PGH₂ inhibition of PGE2-stimulated adenylate cyclase activity. Although relatively high concentrations of PGH2 were used, the lack of any observable inhibition by imidazole or Azo analog I suggests that the labile inhibition demonstrated with PGH2 was probably not dependent upon PGH2 conversion to TXA2, but rather to PGH2 itself. This is different from human platelets where the cyclic AMP lowering activity of PGH_2 appears to be inhibited by imidazole and Azo analog I (R.R. Gorman, unpublished). These experiments do not rule out TXA2 inhibition of cortical adenylate cyclase. The persistent inhibition of basal activity compared to the labile inhibition of PGE2-stimulation is not understood. The antagonistic action of precursor, PGH_2 , and product, PGE_2 , could represent an important system for modulating cortical adenylate cyclase activity.

REFERENCES

- Hamberg, M., Svensson, J., and Samuelsson, B. (1975) Proc. Natl. Acad. Sci. 72, 2994-2998.
- Gryglewski, R.J., Bunting, S., Moncada, S., Flower, R.J., and Vane, J.R. (1976) Prostaglandins 12, 685-712.
- Needleman, P., Moncada, S., Bunting, S., Vane, J.R., Hamberg, M., and Samuelsson, B. (1976) Nature 261, 558-560.
- Miller, O.V., Johnson, R.A., and Gorman, R.R. (1977) Prostaglandins 13, 599-609.

- 5. Gorman, R.R., Bunting, S., and Miller, O.V. (1977) Prostaglandins 13, 377, 388.
- Lee, J.B. (1967) in: Prostaglandins II, Nobel Symposium, Stockholm, Almqvist and Wicksill; New York, Interscience, p. 197 (S. Bergstrom and B. Samuelsson, eds.).
- Blackwell, G.J., Flower, R.J., and Vane, J.R. (1975) Biochem. Biophys. Acta. 398, 178-190.
- 8. Gorman, R.R., Sun, F.F., Miller, O.V., and Johnson, R.A. (1977) Prostaglandins 13, 1043-1053.
- 9. Zenser, T.V., and Davis, B.B. (1977) Prostaglandins (in press).
- Salomon, Y., Londos, C., and Rodbell, M. (1974) Anal. Biochem. 58, 541-548.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)
 J. Biol. Chem. 193, 265-275.
- Hamberg, M., and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. 71, 3400-3404.
- Gorman, R.R., Hamberg, M., and Samuelsson, B. (1975), J. Biol. Chem. 250, 6460-6463.
- Needleman, P., Raz, A., Ferrendelli, J.A., and Minkes, M. (1977)
 Proc. Natl. Acad. Sci. 74, 1716-1720.
- 15. Gorman, R.R., Bundy, G.L., Peterson, D.C., Sun, F.F., Miller, O.V., and Fitspatrick, F.A. (1977) Proc. Natl. Acad. Sci. (in press).